Skip to main content
COVID-19 information and screening Learn how we’re keeping our campus community safe, healthy and engaged during our gradual return to campus.
Note: The university’s mandatory vaccine directive is now in effect. Learn more about vaccine requirements.
Ontario Tech acknowledges the lands and people of the Mississaugas of Scugog Island First Nation.

We are thankful to be welcome on these lands in friendship. The lands we are situated on are covered by the Williams Treaties and are the traditional territory of the Mississaugas, a branch of the greater Anishinaabeg Nation, including Algonquin, Ojibway, Odawa and Pottawatomi. These lands remain home to many Indigenous nations and peoples.

We acknowledge this land out of respect for the Indigenous nations who have cared for Turtle Island, also called North America, from before the arrival of settler peoples until this day. Most importantly, we acknowledge that the history of these lands has been tainted by poor treatment and a lack of friendship with the First Nations who call them home.

This history is something we are all affected by because we are all treaty people in Canada. We all have a shared history to reflect on, and each of us is affected by this history in different ways. Our past defines our present, but if we move forward as friends and allies, then it does not have to define our future.

Learn more about Indigenous Education and Cultural Services

October 8, 2014

Speaker: Ernesto Rodriguez Reina, Ontario Tech University graduate student

Title: An Index Structure for Fast Range Search in Hamming Space

Abstract: This thesis addresses the problem of indexing and querying very large databases of binary vectors. Such databases of binary vectors are a common occurrence in domains that produce or analyze large numbers of high-dimensional binary vectors, such as information retrieval and computer vision. We propose an indexing structure consisting of a compressed trie and a hash table for supporting range queries in Hamming space. The index structure, which can be updated incrementally, is able to solve the range queries for any radius. Our indexing structure outperforms the existing techniques in terms of query processing times. The increased performance is due to the fact that our method is able to prune unnecessary look-ups that necessarily arise in range queries of binary vectors.