Skip to main content
COVID-19 information and screening Learn how we’re keeping our campus community safe, healthy and engaged during our gradual return to campus.
Note: The university’s mandatory vaccine directive is now in effect. Learn more about vaccine requirements.
Ontario Tech acknowledges the lands and people of the Mississaugas of Scugog Island First Nation.

We are thankful to be welcome on these lands in friendship. The lands we are situated on are covered by the Williams Treaties and are the traditional territory of the Mississaugas, a branch of the greater Anishinaabeg Nation, including Algonquin, Ojibway, Odawa and Pottawatomi. These lands remain home to many Indigenous nations and peoples.

We acknowledge this land out of respect for the Indigenous nations who have cared for Turtle Island, also called North America, from before the arrival of settler peoples until this day. Most importantly, we acknowledge that the history of these lands has been tainted by poor treatment and a lack of friendship with the First Nations who call them home.

This history is something we are all affected by because we are all treaty people in Canada. We all have a shared history to reflect on, and each of us is affected by this history in different ways. Our past defines our present, but if we move forward as friends and allies, then it does not have to define our future.

Learn more about Indigenous Education and Cultural Services

September 16, 2015

Speaker: Professor I. G. Kaplan (Materials Research Institute, UNAM, Mexico)
Title:
Discovery and the modern state of the Pauli Exclusion Principle. Can it be proved?
Abstract: In the introduction, we will present how Wolfgang Pauli came to the formulation of his exclusion principle, and the dramatic history of the discovery of the fundamental quantum-mechanical conception of spin. Then we will discuss the modern state of the Pauli Exclusion Principle (PEP). If all experimental data agree with the PEP and the best to day limit on the violation of the PEP is negligible1, its theoretical foundations are still absent.
PEP can be considered from two viewpoints. On the one hand, it asserts that particles with half-integer spin (fermions) are described by antisymmetric wave functions, and particles with integer spin (bosons) are described by symmetric wave functions. This is a so-called spin-statistics connection. As we will discuss, the reasons the spin-statistics connection exists are still unknown. On the other hand, according to the PEP, the permutation symmetry of the total wave functions can be only of two types: symmetric or antisymmetric; all other types of permutation symmetry are forbidden. However, the solutions of the Schrödinger equation may belong to any representation of the permutation group, including the multi-dimensional ones. It is demonstrated that the proofs of the PEP in some textbooks on quantum mechanics, including the famous course of Landau and Lifshitz, are incorrect. The indistinguishability principle is insensitive to the permutation symmetry of the wave function and cannot be used as a criterion for the verification of PEP.
The heuristic arguments have been given in favor that the existence in nature only one-dimensional permutation representations (symmetric and antisymmetric) is not accidental. As follows from the analysis of possible scenarios, the permission of multi-dimensional representations of the permutation group leads to contradictions with the concept of particle identity and their independence2. Thus, the prohibition of the degenerate permutation stated by the PEP follows from the general physical assumptions underlying quantum theory.