Skip to main content
COVID-19 information and screening Learn how we’re keeping our campus community safe, healthy and engaged during our gradual return to campus.
Note: Faculty, staff, students and visitors must complete the mandatory screening questionnaire before coming to campus.
Ontario Tech acknowledges the lands and people of the Mississaugas of Scugog Island First Nation.

We are thankful to be welcome on these lands in friendship. The lands we are situated on are covered by the Williams Treaties and are the traditional territory of the Mississaugas, a branch of the greater Anishinaabeg Nation, including Algonquin, Ojibway, Odawa and Pottawatomi. These lands remain home to many Indigenous nations and peoples.

We acknowledge this land out of respect for the Indigenous nations who have cared for Turtle Island, also called North America, from before the arrival of settler peoples until this day. Most importantly, we acknowledge that the history of these lands has been tainted by poor treatment and a lack of friendship with the First Nations who call them home.

This history is something we are all affected by because we are all treaty people in Canada. We all have a shared history to reflect on, and each of us is affected by this history in different ways. Our past defines our present, but if we move forward as friends and allies, then it does not have to define our future.

Learn more about Indigenous Education and Cultural Services

September 26, 2012

Speaker: Dr. David Strubbe, Research Associate, MIT (Materials Science Department with Professor Jeffrey Grossman)

Title: Exciton Self-Trapping In The Optical Response Of Pentacene Crystals From First Principles

Abstract: Pentacene is a prototypical organic semiconductor with optoelectronic and photovoltaic applications. It is known that the lowest-energy singlet excitation has a Stokes shift between absorption and emission of about 0.14 eV, but the structural deformation associated with this self-trapped exciton remains unknown. We begin with a calculation of the optical properties via the first-principles GW/Bethe-Salpeter (BSE) theory [ML Tiago, JE Northrup, and SG Louie, Phys. Rev. B 67, 115212 (2003); S Sharifzadeh, A Biller, L Kronik, and JB Neaton, Phys. Rev. B 85, 125307 (2012)]. We then study the self-trapping phenomenon via our reformulation of the Bethe-Salpeter excited-state forces approximation of Ismail-Beigi and Louie [Phys. Rev. Lett. 90, 076401 (2003)], which can describe the structural relaxation after optical excitation. The formalism is implemented in the BerkeleyGW code, freely available from www.berkeleygw.org.

Biography: David Strubbe received his B.S. in chemistry and physics from the University of Chicago in 2005, and Ph.D. in physics from the University of California, Berkeley in 2012. His thesis was entitled "Optical and transport properties of organic molecules: Methods and applications," under the direction of Professor Steven Louie. He is currently a postdoctoral associate at MIT in the materials science department with Professor Jeffrey Grossman, where he is working on solar thermal fuels, thermoelectrics and photovoltaics.