Skip to main content
COVID-19 information and screening Learn how we’re keeping our campus community safe, healthy and engaged during our gradual return to campus.
Note: Faculty, staff, students and visitors must complete the mandatory screening questionnaire before coming to campus.
Ontario Tech acknowledges the lands and people of the Mississaugas of Scugog Island First Nation.

We are thankful to be welcome on these lands in friendship. The lands we are situated on are covered by the Williams Treaties and are the traditional territory of the Mississaugas, a branch of the greater Anishinaabeg Nation, including Algonquin, Ojibway, Odawa and Pottawatomi. These lands remain home to many Indigenous nations and peoples.

We acknowledge this land out of respect for the Indigenous nations who have cared for Turtle Island, also called North America, from before the arrival of settler peoples until this day. Most importantly, we acknowledge that the history of these lands has been tainted by poor treatment and a lack of friendship with the First Nations who call them home.

This history is something we are all affected by because we are all treaty people in Canada. We all have a shared history to reflect on, and each of us is affected by this history in different ways. Our past defines our present, but if we move forward as friends and allies, then it does not have to define our future.

Learn more about Indigenous Education and Cultural Services

January 20, 2012

Speaker: Stephen Morris, Department of Physics, University of Toronto

Title: Icicles, washboard roads and meandering syrup

Abstract: This talk will describe three recent experiments on emergent patterns in three diverse physical systems. The overall shape and subsequent rippling instability of icicles is an interesting free-boundary growth problem. It has been linked theoretically to similar phenomena in stalactites. We attempted to grow icicles and determine the motion of their ripples. Washboard road is the result of the instability of a flat granular surface under the action of rolling wheels. The rippling of the road, which is a major annoyance to drivers, sets in above a threshold speed and leads to waves which travel down the road. We studied these waves, which have their own interesting dynamics, both in the laboratory and using 2D molecular dynamics simulation. A viscous fluid, like syrup, falling onto a moving belt creates a novel device called a "fluid mechanical sewing machine." The belt breaks the rotational symmetry of the rope-coiling instability, leading to a rich zoo of states as a function of the belt speed and nozzle height.