Skip to main content
COVID-19 information and screening Learn how we’re keeping our campus community safe, healthy and engaged during our gradual return to campus.
Note: Faculty, staff, students and visitors must complete the mandatory screening questionnaire before coming to campus.
Ontario Tech acknowledges the lands and people of the Mississaugas of Scugog Island First Nation.

We are thankful to be welcome on these lands in friendship. The lands we are situated on are covered by the Williams Treaties and are the traditional territory of the Mississaugas, a branch of the greater Anishinaabeg Nation, including Algonquin, Ojibway, Odawa and Pottawatomi. These lands remain home to many Indigenous nations and peoples.

We acknowledge this land out of respect for the Indigenous nations who have cared for Turtle Island, also called North America, from before the arrival of settler peoples until this day. Most importantly, we acknowledge that the history of these lands has been tainted by poor treatment and a lack of friendship with the First Nations who call them home.

This history is something we are all affected by because we are all treaty people in Canada. We all have a shared history to reflect on, and each of us is affected by this history in different ways. Our past defines our present, but if we move forward as friends and allies, then it does not have to define our future.

Learn more about Indigenous Education and Cultural Services

February 2, 2012

Speaker: : Bernard S. Chan, Department of Applied Mathematics, University of Western Ontario

Title: Bifurcation, Stability, and Cluster Formation ofMulti-Strain Infection Models

Abstract: Clustering behaviours have been found in numerous ODE based multi-strain epidemiological models. Numerical solutions of these models have shown that steady-states, periodic, or even chaotic motions can be self-organized into clusters. Such clustering behaviours are not a priori expected. It has been proposed that the cross-protection from multiple strains of pathogens is responsible for the clustering phenomenon. In this talk, I will show that the steady-state clusterings  in existing models can be analytically predicted. The clusterings occur via semi-simple double zero bifurcations from the quotient networks of the models and the patterns which follow can be predicted through the stability analysis of the bifurcation. Finally, the biological implications of these results are discussed.